наверх

Четверг, 20.07.2017, 23:35
Вы вошли как Гость | RSS
Главная | Каталог статей | Вход | Регистрация Ремонт компьютеров в Краснодаре 8(952)816-47-60
Меню сайта
Антиреклама
Удалить рекламу можно по ссылке Удалить рекламу и перезагрузить страницу клавишей F5.
Категории раздела
HDD [0]
ремонт тесты накопителей
SSD [1]
Обзоры SSD
Flash [0]
Возможности и варианты использования флеш накопителей.
Поиск
Block title
Block content
Балаболка
Добавляйтесь!
Добавляйтесь!
Tweeter

Главная » Статьи » Накопители » SSD

Твёрдотельные SSD-накопители

Накопители SSD

Память завтрашнего дня

Твёрдотельные SSD-накопители планомерно вытесняют из наших компьютеров привычные жёсткие диски, но их триумф может оказаться очень недолгим.

Компьютерные накопители на основе микросхем флэш-памяти, получившие название SSD (Solid State Drive, то есть «твёрдотельный привод»), появились на массовым рынке всего лишь в середине «нулевых» годов.
При этом их самые неприятные недостатки были сведены к минимуму лишь к 2010 году, когда и начался бум «твёрдотельников»: они стали надёжнее, их ёмкость принялась плавно расти, а цена - быстро падать.

К несомненным преимуществам SSD-накопителей перед винчестерами обычно относят в 2-2,5 раза большую скорость чтения (до 250-300 Мбит/с), на порядок меньшее среднее время доступа (0,12-0,18 мс против 14-15 мс), низкое энергопотреблением, полную бесшумность, высокую надёжность и устойчивость к механическим воздействиям благодаря полному отсутствию движущихся частей.

Однако у SSD имеются и недостатки, обусловленные самой конструкцией флэш-памяти.
Прежде всего, это ограниченное количество циклов записи/стирания, связанное с физическим износом: постоянное воздействие высокого напряжения на диэлектрик, изолирующий плавающий затвор, вызывает изменения его структуры и приводит к «пробою», то есть невозможности удерживать заряд.
Это означает выход из строя ячейки, которая утрачивает способность принимать значения «0» или «1», оставаясь постоянно в некотором стабильном состоянии.
Среднее число циклов записи-стирания составляет порядка 10 тысяч у массовых моделей с ячейками типа SLC и до 100 тысяч у дорогих MLC-накопителей.

Второй «врождённый» недостаток заключается в том, что для записи на SSD-накопитель требуется приложение относительно высокого напряжения от 10 до 20 В, которое необходимо для преодоления слоя диэлектрика.
Разумеется, это не лучшим образом сказывается на энергопотреблении, особенно в портативных устройствах, питающихся от аккумуляторов.

В свою очередь, при увеличении плотности ячеек для повышения плотности записи неизбежно уменьшается толщина диэлектрика, что позволяет снизить напряжение записи, но в таком случае проблема износа становится ещё актуальнее.

И, наконец, быстродействие SSD-накопителей вовсе не настолько высоко, как может показаться.
Оно впечатляет, если сравнивать с обычными жёсткими дисками, но даже не самая скоростная современная оперативная память опережает «твёрдотельники» по производительности и времени доступа как минимум в 20-25 раз.

Есть два способа, которые позволяют преодолеть ограничения по быстродействию, сроку службы и плотности записи.
Можно совершенствовать применяемые материалы либо взять за основу конструкции накопителя существенно иной принцип хранения информации.

Память завтрашнего дня

Работы в первом направлении ведутся давно различными производителями памяти, но все они пока упираются в дороговизну и неотработанность технологии.
К примеру, технология SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) отличается от классической флэш-памяти тем, что плавающий затвор ячейки выполнен не из поликристаллического кремния, а из нитрида кремния (Si3N4), имеющего более однородную молекулярную структуру и потому способного лучше удерживать заряд.
При этом слой диэлектрика может быть значительно тоньше, а напряжение записи - в несколько раз меньше.

В современных образцах памяти SONOS, продвигаемых компаниями Philips, Spansion, Infineon и Qimonda, напряжение записи составляет от 5 до 8 В, а теоретическое число циклов записи/стирания достигает 100 миллионов, что в 1000-10000 раз выше, чем у обычной SSD.

Гораздо интереснее и многообразнее альтернативные технологии, причём некоторые из них могут появиться на массовом рынке значительно раньше «улучшенной» флэш-памяти.

Одна из самых необычных технологий — PRAM (Phase change Random Access Memory), то есть память с произвольным доступом на основе фазового перехода.
В PRAM применяется тот же самый принцип, который используется в перезаписываемых оптических дисках CD-RW и DVD-/+RW.
Носителем информации служит специальный материал, способный под воздействием температуры принимать одно из двух состояний: кристаллическое или аморфное.

Однако в отличие от дисков, где имеют значение оптические характеристики материала в этих состояниях, здесь играет роль электрическое сопротивление, которое в кристаллическом состоянии слабое (логическая единица), а в аморфном - высокое (логический ноль).

Память завтрашнего дня

Запись информации в PRAM осуществляется путём нагрева ячеек, а считывание — посредством измерения их сопротивления.
Среди достоинств этой технологии — возможность записи информации без предварительного стирания (совсем как на «болванках», где для перезаписи достаточно стереть содержание, после чего можно записывать «поверх» старых данных), причём скорость записи может в сто раз превышать аналогичный показатель SSD-накопителей на флэш-памяти.

Микросхемы PRAM небольшого объёма (до нескольких десятков мегабайт) уже серийно производятся компаниями Hynix, Intel и Samsung и применяются в смартфонах и планшетах.

Ещё один альтернативный тип памяти, мелкосерийный выпуск которой уже начался, называется MRAM (Magnetoresistive random-access memory — магниторезистивная память с произвольным доступом).
Основой ячейки памяти MRAM выступает магнитный туннельный переход, состоящий из двух магнитных слоёв, разделённых сверхтонким диэлектриком.
Один из двух слоёв имеет фиксированный вектор магнитного поля, а у второго направление вектора намагниченности может изменяться под воздействием внешнего магнитного поля.

Если векторы взаимно противоположны, то электрическое сопротивление ячейки высокое (логический ноль), если же они ориентированы в одном направлении, то сопротивление низкое (логическая единица).

Память завтрашнего дня

Благодаря тому, что данные записываются в результате намагниченности, а не за счёт электрического заряда, они могут храниться более десяти лет без питающего напряжения, при этом отсутствует эффект износа, а число циклов записи/стирания практически не ограничено (более 1016).
Время доступа MRAM составляет порядка наносекунды, а скорость записи примерно в тысячу раз превышает возможности флэш-памяти.

Магниторезистивная память уже порядка десяти лет (!) применяется в некоторых областях, например в космонавтике, но в ближайшее время вероятно её появление на потребительском рынке.
В продвижении MRAM заинтересованы такие крупные игроки, как Hynix, IBM, NEC и Toshiba.

Интересные варианты долговременной памяти возможны и на молекулярном уровне.
К примеру, память FeRAM (Ferroelectric RAM — ферроэлектрическая, или сегнетоэлектрическая, память с произвольным доступом) основана на возможности изменять распределение (поляризацию) атомов в ферроэлектрических материалах за счёт приложения внешнего электрического поля.
В отечественной литературе принят термин «сегнетоэлектрик», по названию первого материала, где был открыт этот эффект, сегнетовой соли.

Память завтрашнего дня

Принцип работы FeRAM заключается в том, что при подаче напряжения на ферроэлектрик атомы в этом материале смещаются вверх или вниз, и изменяется электрическая проводимость, сохраняющаяся и после отключения тока.
Чтение данных при этом производится довольно непривычным способом: управляющий транзистор подаёт напряжение, переводя ячейку в измерительное состояние «0».
Если ячейка уже содержит логический «0», то сигнал не изменяется, если же в ячейке записана «1», то в результате смены поляризации на выходе возникнет короткий импульс, который и будет означать «1».

Среди преимуществ FeRAM - практически не ограниченное число циклов перезаписи (более 1016), высокая скорость записи (150 нс по сравнению с 10 000 нс - 10 мс — для флэш-памяти) и низкое энергопотребление.
Главные недостатки — низкая плотность записи и, в результате, слишком высокая цена хранения информации.
В настоящее время чипы FeRAM небольшой ёмкости применяются преимущественно в лабораторном и медицинском оборудовании, где требуется максимально быстрая фиксация данных и перезапись без физического износа носителя.

Память века нанотехнологий — CBRAM (Conductive-Bridging RAM — память с произвольным доступом на основе проводящего моста).
Здесь в буквальном смысле слова используется нанотрубка, формирующаяся при подаче напряжения в твёрдотельном электролите-диэлектрике между двумя электродами, один из которых изготовлен из электрохимически инертного материала (например, вольфрама), а другой, напротив, из активного (например, из меди или серебра).
Нанотрубка, «пробившая» диэлектрик, снижает сопротивление и записывает логическую единицу, в противном случае ячейка хранит ноль.
Для стирания единицы ток пропускается между электродами в обратном направлении, и нанотрубка разрушается.

Существует ещё множество экспериментальных технологий накопителей будущего — Nano-RAM, Millipede, Racetrack, ReRAM и другие, каждая из которых достойна отдельного подробного рассказа.
Впрочем, и старые добрые жёсткие диски не торопятся занимать места на музейных полках.



Источник:
Категория: SSD | Добавил: masterov (05.09.2016) |
Просмотров: 28 | Комментарии: 0 | Теги: | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright MyCorp © 2017